
1 4/18/21
FBUG MONITOR

Rev 1.1
Release Date

September 28, 1989

TABLE OF CONTENTS

1 GENERAL INFORMATION
1.1 Description of FBUG.. 1

2 THE FBUG COMMAND SET
2.1 Introduction.. 1
2.2 Assembler/Disassembler (as) ... 3
2.3 Block of Memory Fill (bf) .. 3
2.4 Block of Memory Move (bm) .. 4
2.5 Break Point (br).. 4
2.6 Block Search (bs).. 4
2.7 Confidence Test (ct).. 5
2.8 Data Conversion (dc).. 5
2.9 Go (go)... 6
2.10 Help (?/he/help) .. 6
2.11 Load S-Records (lo)... 6
2.12 Memory Display (md)... 7
2.13 Memory Modify (mm) .. 7
2.14 Register Display (rd) .. 8
2.15 Register Modify (rm) ... 8
2.16 Symbol Define (sd)... 8
2.17 Transparent Mode (tm) .. 9
2.18 Trace (tr).. 9

3 USING THE ONE-LINE ASSEMBLER/DISASSEMBLER
3.1 Introduction ... 10
3.2 Entering and Modifying Source Program 10
3.3 Entering a Source Line .. 10
3.4 Entering Branch and Jump Addresses 12
3.5 Entering Register Lists ... 13
3.6 Entering Floating Point Immediate Data 16
3.7 Entering MMU Instructions .. 16

4 SOFTWARE MODIFICATIONS
4.1 Introduction .. 17
4.2 Adding/Deleting Commands ... 17
4.3 Switching Drivers .. 18

5 TARGET SYSTEM CONFIGURATION
5.1 Introduction ... 19
5.2 Assembler/Disassembler .. 19
5.3 Memory Requirements ... 19

1 4/18/21

2 4/18/21
6 LINKING INFORMATION
6.1 Introduction ... 21
6.2 Description of FBUG (68xxx) Makefile 21
6.3 Monitor used to boot the system 24

7 ERROR REPORTING
7.1 Error Listing ..

2 4/18/21

3 4/18/21

CHAPTER 1
GENERAL INFORMATION

1.1 DESCRIPTION OF FBUG(68xxx)

The FBUG monitor is a stand alone software package designed to assist in
evaluating/debugging systems which use the 68xxx Microprocessor. It has the capability to
load and execute user code and includes an assembler/ disassembler designed for quick
program patchwork. The monitor operates in a user-interactive command driven mode
signified by the MOTOROLA> prompt. The command line entered after this prompt
determines which operation is performed.

CHAPTER 2
THE FBUG COMMAND SET

2.1 INTRODUCTION

This chapter explains the FBUG monitor commands and their associated syntax. Table 2.1
summarizes the available commands and shows the section where the command is
explained in greater detail.

TABLE 2.1 FBUG MONITOR COMMANDS

Command Mnemonic Name Section

as Assembler/Disassembler 2.2
bf Block of Memory Fill 2.3
bm Block of Memory Move 2.4
br Breakpoint 2.5
bs Block of Memory Search 2.6
ct Confidence Test 2.7
dc Data Conversion 2.8
go Go 2.9

?/he/help Help 2.10
lo Load S-Records 2.11

md Memory Display 2.12
mm Memory Modify 2.13
rd Register Display 2.14
rm Register Modify 2.15
sd Symbol Define 2.16
tm Transparent Mode 2.17
tr Trace 2.18

3 4/18/21

4 4/18/21
The command line is composed of:

<COMMAND IDENTIFIER>: specifies which command (ex. br)
<SP>: at least one space
OPTION LIST: an option delimiter(-) with options if non-default options

are allowed and are being used. (ex. [<-r>])
<SP>: at least one space
ARGUMENTS: any required arguments specified by the command
separated by commas/spaces as shown in the command description

(ex. <ADDR,ADDR>)

where "<>" enclose symbols that are required on the command line and "[<>]" enclose
symbols that are optional on the command line. Note, in the above examples the -r option
was an example of an optional symbol and that the ADDR fields are requirements on the
command line. The options available with a given command are fully explained in the
section that describes that command. The monitor is not case sensitive to input from the
terminal. All input from the terminal is converted to lower case before being used internally
(except text following a text delimiter; See TEXT below). The arguments of a given
command are described using the following symbols:

<EXP>: An expression can be any numerical expression which may be evaluated
using only the arithmetic + and - operators.

Ex. 1000
Ex. 1+3
Ex. 13+/reset NOTE: where /reset has been

predefined (see section 2.16)

Note: Numbers may be preceded with a base designator if the default (hexadecimal) is not
desired. These designators are shown below in Table 2.2:

TABLE 2.2 BASE DESIGNATORS

Base Designator

Hexadecimal $
Decimal &
Octal @
Binary %

<ADDR>: Address field is any valid expression. Note: This address field should
not be confused with the source and destination addresses required
using the Assembler/Disassembler.

<COUNT>: Count field is any valid expression preceded by a COUNTDEL (count
delimiter,i.e.. ":")

Ex. :100

4 4/18/21

5 4/18/21
<RANGE>: A range of memory locations denoted by either ADDR,ADDR or

ADDR:COUNT.

Ex. 0,100
Ex. 0:50

<TEXT>: An ASCII string of up to 255 characters preceded by a TEXTDEL (text
delimiter i.e.. ";")

Ex. ;sample text

<SIZE>: Can be either:
byte (8 bit) ====> -b
word (16 bit) ====> -w
long (32 bit) ====> -l

Note: ====> stands for "is represented by" or "returns"

<DATA>: Data can be any valid expression.

<MASK>: A mask may be any expression. After evaluating the expression 0's
represent don't cares. A mask is sometimes used to qualify <DATA>. See

section 2.6 for an example of usage.

2.2 ASSEMBLER/DISASSEMBLER
 as <ADDR>

The assembler/disassembler is invoked at the address given and disassembles the object
code at that location. Use of the Assembler/Disassembler is fully described in chapter 3.

2.3 BLOCK OF MEMORY FILL
 bf [<SIZE>] <RANGE> <DATA>

The block fill command fills the specified range of memory with the data listed. If the size
option is not specified the default size used is word. If a multiple of the <SIZE> of <DATA>
does not fit evenly in the <RANGE> the command leaves the last partial word or long word
unchanged.

Examples of use:

bf 100,110 &10
bf 100:8 &10
bf -w 100:8 a
bf -l 100,110 a000a

Note: All of these examples perform the same memory fill.
(i.e.. $00000100: $000a $000a $000a $000a $000a $000a
$0000010C: $000a $000a $0000 $0000 $0000 $0000)

5 4/18/21

6 4/18/21
2.4 BLOCK OF MEMORY MOVE
 bm [<SIZE>] <RANGE> <ADDR>

The block move command allows the user to copy segments of memory to different
locations in memory. The execution of this command does not destroy the original version
unless the location moved to <ADDR> is within the range <RANGE> of the code being
copied. The size option is only available when range is described as <ADDR>:<COUNT>. If
range is being described with the <ADDR>,<ADDR> mode the size defaults to byte. The
size field represents the size transfer that is used to accomplish the memory move.

Examples of use:

bm 1000,2000 10000
bm 1000:800 10000
bm -l 1000:400 10000 Note: This variation executes the fastest

Note: All of these examples perform the same memory move.

2.5 BREAKPOINT
br
br <ADDR>
br <ADDR> <:COUNT>
br -r [<ADDR>]
br -r

The breakpoint command allows the user to list, insert or delete breakpoints in the target
code. This allows the user to stop executing a program and return to the monitor
environment when the specified <ADDR> is prefetched. The different uses of this command
are summarized below:

br list all known breakpoints
br <ADDR> insert a breakpoint at this address
br <ADDR> <:COUNT> insert a breakpoint at this address,

however, return to the monitor
environment only after encountering the
breakpoint <COUNT> number of times.

br -r [<ADDR>] remove the breakpoint at this address
br -r remove all breakpoints

2.6 BLOCK SEARCH
bs [<SIZE>] <RANGE> <DATA>
bs [<SIZE>] <RANGE> <DATA> <MASK>

The block search command allows the user to find a specific pattern within memory. The
search area may extend beyond the <RANGE> specified if a pattern is started within
<RANGE>. There are two primary types of searches:

bs [<SIZE>] <RANGE> <DATA> searches the range for an
exact match of <DATA>.

bs [<SIZE>] <RANGE> <DATA> <MASK> searches the range for any

6 4/18/21

7 4/18/21
pattern that matches <DATA>
where there is a "1" in the
binary representation of
the mask.

Ex. With memory at location $100 as shown below, executing
"bs 100,118 $1234 $ffbf" ====>

Starting address: $00000100
Ending address: $00000117
Found at: $00000110:$1234
Found at: $00000114:$1274

Memory for the example above:

$00000100: $0000 $0000 $0000 $0000 $0000 $0000
$0000010C: $0000 $0000 $1234 $0000 $1274 $0000

2.7 CONFIDENCE TEST
ct

The confidence test command allows the user to perform a confidence test of the system
being evaluated. This command is designed to write a -1 into the result variable (int confres
in vardef.h) of the confidence test and then pass the address of this variable in register a0 to
a called subroutine. This routine writes a 0 or 1 into confres depending on whether the test
passes or fails respectively. If the routine does not place a valid result in this variable then
the monitor assumes that the confidence test was not performed and displays "ERROR
14:Unable to perform Confidence Test". The confidence test to be performed is system
dependent and has to developed for the system on which the monitor is running.

2.8 DATA CONVERSION
dc <EXP>

The data conversion command allows the user to evaluate an input expression and
determine its hexadecimal and decimal equivalent.

Examples of use:

NOTE: The following symbols have been defined earlier in order
fpr them to be used in the examples below:
EX 1. uses /start= 0
Ex 2. uses /start= - $18
Ex 3. uses /finish= 10000 and /start=$10000
(see section 2.17)

Ex. 1 dc $17+/start ====> $17 = &23
Ex. 2 dc $17+/start ====> UNSIGNED : $FFFFFFFF = &4294967295

 SIGNED : -$1 = -&1
Ex. 3 dc $/finish-/start ====> $10000 = 65536

7 4/18/21

8 4/18/21

2.9 GO
go [<ADDR>]

The go command allows the user to execute target programs. If an address is not specified
on the command line then the current PC value is used. This value is either 1.)the initialized
PC value if no target code has been run, 2.)the last value of the PC used in executing target
code or 3.)the value placed into the PC register by a RM command (Register Modify see
section 2.16). If an address is included on the command line then the PC is modified to be
the specified address. and execution begins at this address. In both cases, the register state
that the microprocessor is initialized to, before executing the target code at this location,
can be viewed by executing a rd command (See section 2.15).

2.10 HELP
? [<symbol>]
he [<symbol>]
help [<symbol>]

The help command allows the user to view a list of allowable commands and the syntax
associated with them. Symbols used to describe the command usage can be looked up also.

Examples of use:

?,he or help ====> return a complete listing of all commands with usage
? as ====> AS <addr>
help addr ====> <number>
he number ====> <hex> || <dec> || <oct> || <bin> || <symbol>

Note: <number> may also be an expression

2.11 LOAD S-RECORD
lo [<OFFSET>] ;<TEXT>

The load command allows the user to download S-Records from the host system. If an offset
is present on the command line then the target address is the offset added to the address
determined by the S-Record. This command sends the <TEXT> beyond the ";" to the HOST.
It then expects the HOST to begin sending S-Records to the terminal.

Examples of use:

lo ;cat fbug.mx

Note: The "cat" command is a UNIX command that concatenates and then prints
the specified files using standard output. This effectively sends
the contents of the file to the terminal. The monitor then loads the
contents of the S-Records in the file to the addresses determined by
the S-Records.

8 4/18/21

9 4/18/21
lo a0000 ;cat fbug.mx

Note: This command downloads the same S-Record file used
in the first example except that it is down loaded
into memory at the address determined by the
S-Record + $a0000 (i.e.. the offset is added in).

2.12 MEMORY DISPLAY
md [<SIZE>] <addr>
md [<SIZE>] <RANGE>
md -di <addr>

The memory display command allows the user to view memory. The size used to display the
memory is determined by the size option. If no option is used the default is word. If the
range exceeds the screen capacity, output to the screen is suspended until any key is
pressed.

Examples of use:

md -l 100,110
md -l 100:4
md 100:8
md -di 100 Note: This command begins to disassemble the memory at

this location.

2.13 MEMORY MODIFY
mm [<SIZE>] <ADDR>
mm <CONTROL>

The memory modify command allows the user to view and modify memory. The size used to
display the memory is determined by the size option. The size default is word. Memory is
displayed beginning at the address specified followed by a '?' prompt. The user may type in
an <exp> to replace that memory value or hit return to view the next memory value. To exit
the command, type ". <cr>" (period <carriage return>). Other available <CONTROL>
characters are summarized below in Table 2.3:

TABLE 2.3 CONTROL CHARACTERS

Control Character Designator

- <EXP> backup <EXP> memory locations
+ <EXP> advance " " "

Examples of use:

mm -l 100 ====> $00000100 $00000000 ?
mm 100 ====> $00000100 $0000 ?

(i.e.. uses the default "word" size)

9 4/18/21

10 4/18/21

2.14 REGISTER DISPLAY
rd
rd -f Note: Only valid if Coprocessor support has been specified

see below.

The register display command allows the user to view the contents of the registers of the
mpu/fpu. Versions released before August 30,1989 only supported the 68020 programmers
model and did not support the coprocessor (68881/882) programmers model. Versions
released after August 30,1989 support the programmers model that the user specifies
before compiling the monitor. This is done by using the DEVICE,EMULATOR and
COPROCESSOR "define" statements in the "targetsys.h" header file. These defines are
discussed further in the "Target System Configuration" section. The values shown for the
registers are either 1.) the initialized register state if no target code has been run, 2.) the
last values in the registers while executing target code or 3.) the values specifically placed
into the registers by a rm command.

2.15 REGISTER MODIFY
rm [<REGISTER> [<New Value>]]

The RM command allows the user to the modify the contents of the registers of the mpu.

Examples of use:

To change the PC value:

rm pc 3000 ====> changes the PC value to 3000

or

rm ====> Which register?
pc ====> PC=00004000NEW VALUE?
3000 ====> changes the PC value to 3000

or

rm pc ====> PC=00004000NEW VALUE?
3000 ====> changes the PC value to 3000

2.16 SYMBOL DEFINE
sd [<SYMBOL> <EXP>]
sd -r <SYMBOL>

10 4/18/21

11 4/18/21
The symbol define command allows the user to define symbols. These symbols can then be
used within expressions. Using a symbol in an expression results in the symbol being
substituted with the expression that was used to define it. Once defined, the symbol is
available until the monitor is reset. If a symbol is defined multiple times the monitor uses
the first definition.

Examples of use:

sd ====> lists which symbols are already
known

sd /reset 10000 ====> defines /reset to be $10000
whenever it is used in an expression.

sd /start -$18 ====> defines /start to be -$18
whenever it is used in an expression.

sd -r /start ====> removes the first definition of /start
from the list

NOTE: Symbols that have been defined using the sd command can
be used in any expressions. An example of this is to
use a symbol defined to enter source code while in
the assembler (i.e.. bsr /startsub after defining
/startsub).

2.17 TRANSPARENT MODE
tm

The transparent mode command places the user into transparent mode by establishing a
software connection between the HOST and TERMINAL. Transparent mode preempts normal
communication between the TERMINAL and the debugger. While in this mode all keyboard
input is relayed directly to the HOST. HOST responses, in turn, are returned to the screen.
Typing a CTRL A returns the user to the monitor environment.

2.18 TRACE
tr [<ADDR>][<COUNT>]

The trace command allows the user to trace though target code and observe the registers
after executing the command line. If count is specified then the microprocessor executes
<COUNT> number of instructions before returning to the monitor environment. Trace
begins from the <ADDR> listed on the command line or from the current PC if an <ADDR>
is not included. The trace instruction can be continued by hitting a carriage return. To exit,
a "." must be entered.

Examples of use:

tr ====> traces 1 instruction from the current PC
tr :10 ====> executes 10 instructions past the current

PC then returns to the monitor
environment

tr 1000 ====> traces 1 instruction starting at $1000

11 4/18/21

12 4/18/21
CHAPTER 3
USING THE ONE-LINE ASSEMBLER/DISASSEMBLER

3.1 INTRODUCTION

Included in the FBUG monitor is an assembler/disassembler command which can be
executed as detailed in the previous chapter. This assembler/ disassembler allows the user
to modify target code. Each source line that is typed in by the user is entered into memory
at the displayed address. This line is then disassembled so that the user can verify the
actual code entered into memory. If no change is desired a <CR> moves the user to the
next opcode in memory.

NOTE: The instruction set that is available to the user is determined when
the monitor is compiled. The choice of the values of DEVICE, EMULATOR
and COPROCESSOR determine which instruction set is available.
See the "Target System Configuration" section below.

CAUTION: This assembler/disassembler does not insert code into the source
program; it merely overwrites memory at that location. As a
result, a program patch that requires code insertion can be
accomplished by first Block Moving code to free up an insertion
area and then inserting into that area.

3.2 ENTERING AND MODIFYING SOURCE PROGRAM

In order to enter and modify source code, the as command should be executed as detailed in
section 2.2 (i.e.. as <ADDR>). This places the user into the Assembler/Disassembler
routine. Table 3.1 summarizes the commands that can be executed within this routine:

TABLE 3.1 ASSEMBLER/DISASSEMBLER SUB COMMANDS

Command Designator

BACKUP <EXP> - <EXP>
ADVANCE <EXP> + <EXP>
FINISH .
HELP ?
STEP PAST carriage return
DEFINE CONSTANT DC #<EXP>

Note: Executing a '?' while in the assembler/disassembler returns the DEVICE
that the assembler/disassembler is supporting.

3.3 ENTERING A SOURCE LINE

12 4/18/21

13 4/18/21
After executing an as <ADDR> command, the assembler/disassembler returns with the
disassembly of the code found at that location. At this time the user may execute an
assembler command shown in section 3.2 or type in the source line that is to replace the
displayed source code. While entering source the standard MOTOROLA effective addressing
modes are used. These modes are summarized below in Table 3.2:

TABLE 3.2 ASSEMBLER/DISASSEMBLER EFFECTIVE ADDRESSING MODES

Effective Addressing Mode Syntax

Register Direct Dn
Address register direct An
Address register indirect (An)
Address register indirect

with Postincrement (An)+
Address register indirect

with Predecrement -(An)
Address register indirect

with Displacement (d16,An)
Address register indirect

with Index (d8) (d8,An,Xn.SIZE*SCALE)
Address register indirect

with Index (base displacement) (bd,An,Xn.SIZE*SCALE)
Memory indirect Post-indexed ([bd,An],Xn.SIZE*SCALE,od)
Memory indirect Pre-indexed ([bd,An,Xn.SIZE*SCALE],od)
PC indirect with displacement (d16,PC)
PC indirect with index (d8) (d8,PC,Xn.SIZE*SCALE)
PC indirect with index (bd) (bd,PC,Xn.SIZE*SCALE)
PC memory indirect Post-indexed ([bd,PC],Xn.SIZE*SCALE,od)
PC memory indirect Pre-indexed ([bd,PC,Xn.SIZE*SCALE],od)
Absolute Short Address (xxx).W
Absolute Long Address (xxx).L
Absolute Address xxx optimizes (bwl)
Immediate Data #xxx

While using the POST or PRE indexed modes, fields may be skipped by using a comma. An
example is shown below:

Ex. andi #12,([,],,) ====> andi.b #$12,([$0,ZA0],ZD0.W*1,$0)

Other examples of source lines are shown below:

Ex. ori.l #12,(a1) =====> ori.l #$12,(a1)

Ex. addq #1,(a1) =====> addq.b #$1,(a1)

There are only limited error screening abilities included within the monitor. Examples of this
are shown below:

Ex. jmp (123).w =====> jmp ($123).W

Note: When executed results in a bus error.
13 4/18/21

14 4/18/21

14 4/18/21

15 4/18/21
Ex. bsr (123) =====>

ERROR 10: illegal change of flow ===> bsr (123)

Note: The bsr instruction does check for illegal changes of flow.

NOTE: Flow may not be changed to an odd address.

Upper digits of data are NOT truncated when a mismatch between size and immediate data
is found if the byte or word size option was specifically entered. If the long size option is
specified and data exceeds this range then upper digits ARE truncated.

Ex. addi.b #12345678,(a1) ====>

ERROR 11:immediate data/size option error ===> addi.b #12345678,(a1)

Ex. addi.l #123456789,(a1) ====> addi.l #$23456789,(a1)
Ex. addi #123456789,(a1) ====> addi.l #$23456789,(a1)

(defaults to the long option)
truncated--------------^

Upper digits of data are truncated on commands that have a limited field in the opword to
store the immediate data. Examples of this are shown below.

Ex. addq #10,(d0) =====> addq.b #$0,(d0)

Ex. trap #10 =====> trap #$0 input is hex default

Ex. trap #&10 =====> trap #$A

3.4 ENTERING CHANGE OF FLOW INSTRUCTIONS

Since the assembler/disassembler does not use labels, all instructions that use <label> as
an effective addressing mode must have their displacement determined. If initially
unknown, space for this displacement must be reserved and then the user needs to come
back and enter the displacement. Once the displacement has been determined it may be
entered as shown in the following example:

Ex. In this example the location of the target instruction of a branch is known
to be $100000 and a BRA is needed at location 0. After executing "AS 0" and obtaining the
disassembly found at 0 the user could type:

BRA 100000 or
BRA (100000) or
BRA.l #ffffe

The absolute addressing mode can be used if the target address of a branch is known (as in
the first 2 examples) or the displacement (last example) can be entered using the
immediate data addressing mode.

15 4/18/21

16 4/18/21
CAUTION: In some instances unexpected results can occur while using

change of flow statements. These instances are summarized below with
examples.

Ex. 1 If the degenerate case of a branch statement in used (i.e.. attempting to use a short
branch to branch to the following instruction) the assembler mistakenly assembles this .b
option. However, since the displacement is zero this is a .w opcode and the disassembler
correctly displays this fact to the user.

 $00004000 nop ? bra.b ====> results in an INCORRECT assembly

Ex. 2 If the user attempts to force a particular size branch statement and the actual branch
requires a greater displacement than was reserved then the assembler prints an error
message: "ERR0R 16: OUT OF DISPLACEMENT RANGE" .

 $00004000 nop ?bra.w (100000)

One way to assure this does not occur is to not enter a size option. This allows the
assembler to choose the correct size for the displacement.

3.5 ENTERING REGISTERS and REGISTER LISTS

The move multiple register instruction (movem) uses a register list as an effective address.
This list may be entered in the following method:

Ex.

a0 ====> single address register
d3 ====> single data register
a0-a3 ====> series of registers
a0-a3/a7 ====> combination of previous examples
a0-a7/d0-d7 ====> all of the registers

If coprocessor support is specified then the floating point registers
can be entered as shown below:

Ex.

fp0 ====> single floating point register
fp0-fp2 ====> series of registers
fp0-fp3/fp7 ====> combination of previous examples

Many of the commands require the entering of registers other than data or address
registers. Tables 3.3-8 show listings of the registers that are used and the abbreviations
accepted by the assembler:

16 4/18/21

17 4/18/21
TABLE 3.3 68000/68HC000/68008 REGISTERS

__
Name Syntax

__
User Stack Pointer USP
Program Counter PC
Condition Code Register CCR
Supervisor Stack Pointer SSP
Status Register SR

TABLE 3.4 68010 REGISTERS

__
Name Syntax

__
User Stack Pointer USP
Program Counter PC
Condition Code Register CCR
Supervisor Stack Pointer SSP
Status Register SR
*Vector Break Register VBR
*Source Function Code Register SFC
*Destination Function Code Register DFC

Note: * Represents a change from the previous
model

TABLE 3.5 68020 REGISTERS

__
Name Syntax

__
User Stack Pointer USP
Status Register SR
Condition Code Register CCR
Program Counter PC
*Master Stack Pointer MSP
*Interrupt Stack Pointer ISP
Vector Break Register VBR
Source Function Code Register SFC
Destination Function Code Register DFC
*Cache Control Register CACR
*Cache Address Register CAAR

17 4/18/21

18 4/18/21
TABLE 3.6 68030 REGISTERS

__
Name Syntax

__
User Stack Pointer USP
Status Register SR
Condition Code Register CCR
Program Counter PC
Master Stack Pointer MSP
Interrupt Stack Pointer ISP
Vector Break Register VBR
Source Function Code Register SFC
Destination Function Code Register DFC
Cache Control Register CACR
Cache Address Register CAAR
*CPU Root Pointer Register CRP
*Supervisor Root Pointer Register SRP
*Translation Control Register TC
*Transparent Translation Register 0 TT0
*Transparent Translation Register 1 TT1
*MMU Status Register PSR

TABLE 3.7 68040 REGISTERS

__
Name Syntax

__
User Stack Pointer USP
Status Register SR
Condition Code Register CCR
Program Counter PC
Master Stack Pointer MSP
Interrupt Stack Pointer ISP
Vector Break Register VBR
Source Function Code Register SFC
Destination Function Code Register DFC
Cache Control Register CACR
Cache Address Register CAAR
User Root Pointer Register URP
Supervisor Root Pointer Register SRP
Translation Control Register TC
*Data Transparent Translation Register 0 DTT0
*Data Transparent Translation Register 1 DTT1
*Instruction Transparent Trans. Reg. 0 ITT0
*Instruction Transparent Trans. Reg. 1 ITT1
MMU Status Register PSR

Note: Also the floating point registers below

18 4/18/21

19 4/18/21
TABLE 3.8 FLOATING POINT REGISTERS

__
Name Syntax

__
Floating Point Control Register FPCR
Floating Point Status Register FPSR
Floating Point Inst. Address Register FPIAR
Floating Point Data Register FP0-FP7

NOTE: PMMU (68851) support is not available under release 1.0.

3.6 ENTERING/EVALUATING FLOATING POINT IMMEDIATE DATA

Floating point immediate data must be entered using a decimal point with at least one (1)
digit in front of the decimal place (even if it is a '0'). Ex. 0.0012. Since the C compiler used
was not based on the draft proposed version of ANSI C the software is incapable of
performing the 'assembling' of extended immediate data to extended precision. The
monitor makes the correct conversion up to double precision and places this result in an
extended format. If the compiler that is being used does conform to allowing a 'long double'
type then changing the type of the variable 'weight' in the EAallowed routine (in the asm68.c
file) from double to long double should provide the added precision. Examples of floating
point immediate data shown below:

Ex. fmove.s #5.0,fp0 ====> fmove.s 1_400000_E_2,FP0

The format on the disassembly is integer part_fraction field_E_exponent field, where the
fraction bits represent weighting of 1/2 ,1/4,....etc. from the left to the right. The exponent
bits represent the unbiased power that 2 should be raised to. A conversion to decimal can be
accomplished by evaluating:

integer + evaluated fraction x 2^exponent field

In the above example this equates to:

 (1 + .25) x 2^2 = 5.0

NOTE: The monitor uses the round toward zero rounding mode in the assembler
when assembling floating point immediate data.

3.7 ENTERING MMU INSTRUCTIONS

MMU instructions should NOT be entered with a size descriptor. The assembler defaults to
the correct size.

Ex. pmove (a0),tt1 ;assembles

pmove.l (a0),tt1 ;does not assemble even though the operation
;is a long operation.

A summary of the mnemonic representation of the MMU registers can be found in Table 3.5
and 3.6 for the 68030 and 68040 monitors respectively.

19 4/18/21

20 4/18/21

CHAPTER 4
SOFTWARE MODIFICATIONS

4.1 SOFTWARE OVERVIEW

The FBUG monitor uses 4 header files. These header files are briefly described below.

TARGETSYS.H
This file is the header file that is used to configure the monitor to the target system. All of
the predefined variables that are used by the monitor are found here. It is accessed when
any call to #include "userdef.h" is made.

USERDEF.H
This is the file that defines all of the structures that are used by the monitor.

TEXTDEF.H
This file has all of the strings that are used by the monitor. It is also where most of the
structures that are used by the monitor are implemented.

VARDEF.H
This file has all of the global variables that are used by the monitor.

The flow of the FBUG monitor is outlined below:

asmstartport.s ===> coldstartport.c ===> main.c ----|
 ^-------|

The first source file (asmstartport.s) initializes the microprocessor to a known state and then
branches to the main{} statement in the coldstartport.c routine. The coldstartport.c routine
performs all of the initialization for the monitor before branching to the mainloop{} routine
in the main.c file. The mainloop{} routine is a continuous loop used by the monitor. From
this loop the various commands of the monitor are called.

4.2 ADDING/DELETING COMMANDS

The process of adding or deleting commands from the monitor is a relatively simple process.
Adding a command involves making 2 additions to the textdef.h header file and then
developing/including the command description file with the monitor.

The two changes that need to be made to the textdef.h header file are:

1.) include the function name that implements the command as an externally defined
routine. For example the line in the textdef.h file that states

extern trcmd(),pfcmd(),ascmd(),sdcmd(),ctcmd();

20 4/18/21

21 4/18/21
accomplishes this for those five commands.

2.) include the command in the f[] structure with the appropriate information. For an
example of how this is done the "ct" command entry is discussed:

The line

{"ct Confidence Test \n",ctcmd,"ct \n"}

includes the ct command in the f[] structure. The first textstring (i.e.. ct Confidence Test \n)
is the string that is used for the command listing print out performed when the help or ?
commands are executed. Also, the first word of this string is the command name that is
searched for when attempting to execute this command. The function name "ctcmd" is the
name of the function that is executed when this command is used by the monitor. The last
text string (i.e.. ct \n) is the string that describes the type of syntax used with this command.

Next, the command description file has to be written and included in the makefile of the
monitor (see CHP6 LINKING INFORMATION for more information concerning the linking
process). The calling convention for the functions which perform the command is to pass
the function two parameters. These two parameters are argc and argv. They are the
number of arguments on the command line and the actual command line respectively.

Deleting a command is accomplished by following an analogous path. Removing the 2 lines
that incorporate a command into the monitor and removing the command from the linking
process effectively remove the command from the monitor.

4.3 SWITCHING DRIVERS

The I/O driver used by the monitor in version 1.0 is for a MC68681 DUART. If the target
system uses some other driver, then the following changes needs to be made:

1.) The DUART initialization performed in coldstartport.c has to be
modified to accomplish the same results with the new driver.

2.) The user definitions associated with the new driver has to be
updated in the targetsys.h file. (i.e.. the offsets to the various
buffers of the new driver)

3.) It may be necessary to modify the getch and putch routines found in
getline.c and print.c respectively.

CHAPTER 5
TARGET SYSTEM CONFIGURATION

21 4/18/21

22 4/18/21
5.1 INTRODUCTION

The FBUG monitor can be configured to support any of the 68xxx microprocessors. This is
accomplished by a series of define statements found within the "targetsys.h" header file. By
defining which configuration is supported additional software can be excluded from the code
at compilation time to result in a smaller monitor. These space savings are generally
accomplished based on the size of the assembler/disassembler for the associated
configuration. The monitor can also be configured to a specific memory configuration.

5.2 ASSEMBLER/DISASSEMBLER

The assembler/disassembler supported in the 'AS' command is determined by the definition
of the DEVICE, EMULATOR and COPROCESSOR variables found in the targetsys.h header file.
The choices for DEVICE are 68000, 68008, 68010, 68020, 68030 or 68040. This also
determines the programmer's model that is supported in the 'RD' and 'RM' commands. If
the DEVICE selected is '68040' then the EMULATOR define is used to determine whether
68881/68882 commands not implemented in hardware should be supported. Placing a
'TRUE' here stipulates that all 68881/882 instructions should be supported. If there is no
software emulation of these commands then a 'FALSE' should be placed here. If the DEVICE
selected is either 68020 or 68030 then the COPROCESSOR (TRUE or FALSE) define statement
determines whether the 68881/882 instruction set should be supported.

Note: As of release 1.0 the 68040 register model is visible but supervisor registers
other than those implemented on the 68020 are not supported. As a result of this the
monitor displays the entire 68040 register set and APPEARS to allow the user to
modify these registers with a RM command. However, when executing target code (GO
or TR command) the monitor does NOT use these values to initialize the state of the
microprocessor before executing the target code. In addition, these registers are NOT

captured by the monitor if they have been modified by target code.

5.3 MEMORY REQUIREMENTS

The "targetsys.h" file contains all of the variables that determine the target system
configuration. These variables are listed below and needs to be changed to reflect the
configuration of the target system.

/* ** */
/* ********************** MEMORY MAP FOR DEBUGGER ********************* */

#define DUARTALOC 0xffe02000 /* MC68681 duart channel a */
#define DUARTBLOC 0xffe02008 /* MC68681 duart channel b */

#define ROMLOC 0x100000 /* system ROM space */

22 4/18/21

23 4/18/21
/* .text segment should be loaded here */
/* .data segment should be loaded here */

#define SYSRAMLOC 0x000fe000
/* system RAM space */
/* NOTE: space must be reserved for the

 location of the .bss used by
 the monitor. */

/* Provided the .bss is not larger than
 1000 (i.e.. VBRLOC resides at SYSRAMLOC
 + 1000) placing the .bss from the
 monitor at this location is allowed */

#define ISPLOC SYSRAMLOC+0x2000 /* defines for monitor */
#define MSPLOC SYSRAMLOC+0x1c00
#define USPLOC SYSRAMLOC+0x1b00
#define VBRLOC SYSRAMLOC+0x1000

#define USERPCLOC 0x4000 /* defines for usercode */
#define USERVBRLOC 0x0

/* *** */
#if(DEVICE<68020)
#define USERSSPLOC USERVBRLOC+0x2000 /* Note: Only one of these is

 used based on the device
 being implemented */

#else
#define USERISPLOC USERVBRLOC+0x2000
#endif
/* *** */

#define USERMSPLOC USERVBRLOC+0x1c00
#define USERUSPLOC USERVBRLOC+0x1b00

#define SRSTART 0x2700 /* status register */

**

The DUART assumed is a MC68681 and its respective channels are found at the stated
locations. If this is not the case, then the initialization routine in coldstartport.c has to be
changed.

The next 5 locations describe the memory map of the system used for the port.

The next location describes the value that is placed in the VBR register.

NOTE: This is the location of the vector offset table. This space is used
by the monitor to set up the offset table.

23 4/18/21

24 4/18/21
The next 5 locations describe the initial values that the monitor uses for "user code".

The next location describes the value that is placed in the user's VBR register.

NOTE: This is the location of the user's vector offset table and is
also initialized by the monitor.

SRSTART is the initialized value of the MC68xxx Status Register

CHAPTER 6
LINKING INFORMATION

6.1 INTRODUCTION

The FBUG monitor is a stand alone software package written in C and developed under the
UNIX environment. The combined .text and .data section of the object file varies from
approx. 54K to 87 bytes of memory. Different configurations are summarized below in Table
6.1. The purpose of this chapter is to describe the method to compile and link the various
files that make up the FBUG monitor. There is also a brief description of the necessary
changes that need to be made in order to port the FBUG monitor to a MC68xxx based board.

TABLE 6.1 68000/68HC000/68008/68010 REGISTERS

__
DEVICE COPROCESSOR EMULATOR SIZE (KB)

__
68000/008/010 ----NA----- ---NA--- 54K

68020 FALSE ---NA--- 61K
68020 TRUE ---NA--- 81K
68030 FALSE ---NA--- 65K
68030 TRUE ---NA--- 87K
68040 ----NA----- FALSE 82K
68040 ----NA----- TRUE 84K

NOTE: ----NA---- represents a don't care
for that particular DEVICE.

__

6.2 DESCRIPTION OF FBUG(68xxx) MAKEFILE

The makefile used to create the FBUG monitor under the UNIX operating system is shown
below and can be found in the file named "makefile" in this directory.

MAKEFILE

portbug : coldport.o main.o printport.o getlineport.o general.o \
asmprocport.o \

24 4/18/21

25 4/18/21
bf.o bm.o br.o bs.o dc.o he.o lo.o rd.o rm.o tm.o \
mm.o md.o go.o tr.o sd.o as.o asm68.o disasm68.o asmcode68.o \
asmhandler.o handler.o asmstartport.o conf.o fproutines.o 68def.o
ld ./ifilemb asmstartport.o asmhandler.o coldport.o \
printport.o getlineport.o general.o asmprocport.o main.o bf.o bm.o \
bs.o dc.o he.o lo.o rd.o rm.o tm.o mm.o md.o go.o tr.o br.o \
sd.o as.o disasm68.o asm68.o asmcode68.o handler.o conf.o \
fproutines.o 68def.o \
-m -o fbugxxxd >memmap
ubuilds fbugxxxd

!!
NOTE: In fbugxxxd xxx ===> 000,008,010,020 etc...

d ===> T or F for whether Coprocessor supported
!!

main.o : main.c userdef.h textdef.h vardef.h
:
:
:
:
:

asmproc.o : asmproc.c userdef.h textdef.h vardef.h

asmstartport.o : textdef.h vardef.h userdef.h targetsys.h
/lib/cpp asmstartport.s > temp.s
as -o asmstartport.o temp.s
rm temp.s

asmcode68.o : textdef.h vardef.h userdef.h targetsys.h
/lib/cpp asmcode68.s > temp.s
as -o asmcode68.o temp.s
rm temp.s

asmhandler.o : textdef.h vardef.h userdef.h targetsys.h
/lib/cpp asmhandler.s > temp.s
as -o asmhandler.o temp.s
rm temp.s

!!!
NOTE: In order to ease the porting of the monitor to a

specific system, a C preprocessor is executed on the
three (3) .s files above. This performs a text
substitution into these files from the targetsys.h
header file. If the development system being used does
not support this capability then these text substitutions
must be made manually.

!!!

Executing the "make" command under UNIX with this makefile produces the file "fbug.mx"
which is the stand alone monitor. The make command performs the following actions:

25 4/18/21

26 4/18/21
1. Checks to see if all of the current .o files on which fbugxxxd depends are current. If
not then compile the source files to create those object files. It also checks to verify that the
files on which these files depend on are up to date. If they are not then they are compiled
first.

/* ******************************!!!!!!!!!********************************* */
NOTE: These dependencies are not conclusive and if a change is made to any of the
header files then all of the files should be recompiled until a thorough understanding of
the interdependencies between the modules is achieved.

/* ******************************!!!!!!!!!********************************* */

2. After all the required .o files have been brought up to date they are linked together in
the order described after the "ld" command. The "ifilemb" file is used as a ld directive to
describe the memory configuration of the target system. In this instance, the target system
has the following memory configuration:

00000000-00000255 RAM
000FE000-00100000 RAM
00100000-00110000 ROM

The ifilemb informs the UNIX linker of this target configuration and also where to
place each section. In this instance the .text section is being placed into ROM and the .data
and .bss section are being placed in RAM. Refer to the "ifilemb" file in this directory.

/* ******************************!!!!!!!!!********************************* */
NOTE: Space has to be made available for both the monitor's vector offset table and
the user's vector offset table. (i.e.. 256 32-bit words has to be available at locations
VBRLOC and USERVBRLOC. (i.e.. 00000000-00000255 RAM)

NOTE: The monitor uses approx. $1000Kb ram for the .bss variables (placed ,at
SYSRAMLOC). Next the vector offset table is placed at SYSRAMLOC + $1000. Then

the stack space used by the monitor is placed above this. Using the default
configuration provided requires that approx. $2500 bytes of RAM be reserved for the
monitor beginning at location SYSRAMLOC and that 256 32-Bit words be reserved at
the USERVBRLOC (which is at location 0 in the released version). If user code is run then

the user is responsible for making sure that the stack space used by the user
does not interfere with the monitors space.
/* ******************************!!!!!!!!!********************************* */

3. These files are now linked and this file is labeled "fbugxxxd"

26 4/18/21

27 4/18/21
4. Next, the "ubuilds fbugxxxd" command creates an S-Record from the fbug file that
was previously created. This S-Record can be used to download to systems that have the
capability to load S-Records.

The environment that is being worked under has to be able to perform the functions stated
above in order for the user to create their FBUG object file.

6.3 MONITOR USED TO BOOT THE SYSTEM

If it is desired for the monitor to be at the reset location (i.e.. logical 0 in memory),then the
following two lines should be added above the start: routine in the asmstartport.s file:

INITSP:long 0x100000
INITPC long start

NOTE: The ifilemb directive must still accurately reflect the location of ROM on the system.

27 4/18/21

